MicroArchitecture Projects

State House Retrofit in Auckland, $100,000

[su_media url=”″]
Demonstrates a sustainable renovations package for upgrading Housing New Zealand properties. Includes family-friendly ideas designed by the home’s tenant.

Team Housewise Vision for More Sustainable Living

Team Housewise is interested in how Housing New Zealand can develop a renovation package for a 1950s state house with useable technologies that facilitate more environmentally and socially sustainable performance in-use (‘hardware’) as well as facilitate a learning process with residents (‘software’) to support more sustainable living.
This special renovation project that is based on a joint team approach which focuses on engaging the resident family to ensure that the solutions adopted are practical and prioritized for longer term sustainability.

Team motivation and objectives

The house presented most of the chronic symptoms associated with underperforming New Zealand Housing stock from its era; damp and mouldy, yet still draughty; too cold in winter; too hot in summer and a building in need of extensive maintenance and design modification.
One of the tenant’s children has asthma and her symptoms are likely aggravated by the poor conditions inside the house.
The team felt it was essential to engage the family in design to build awareness and capacity to manage the operational decisions involved with balancing energy and water cost savings with comfort and health improvements.
The objectives for improvements included increasing the effectiveness of ventilation , both passive and active; to improve the building envelope (the house had minimal loose insulation in the ceiling cavity and no under floor or wall insulation), to improve the health of the family, especially the symptoms of the asthmatic child, mitigate problems caused by poor storm water drainage on-site and improve the family’s control over both comfort and operational cost and to replace the inefficient open fireplace.

Summarised List of features used to improve the property

• Internal layout
• Removal of fireplace and wall to sunroom to open up lounge
• Opening up lounge to kitchen
• Opening doors from the lounge to a north facing deck
• New bedroom added
• Separate toilet created
• Separate shower created
• New wardrobes and storage areas created
• New kitchen with windows to yard space to view children playing
• Removal of old asbestos flooring
• Trimming of tall boundary hedge preventing winter sun into living areas
• Removal of old decaying garage including asbestos cladding
• Creation of deck
• Creation of a rain garden and improved drainage
• New safer fencing to adjoining properties
• New vegetable garden
• New paths
Energy Saving Features
• Under floor insulation R 3.2
• Wall insulation R 2.6
• Additional ceiling insulation over R5
• Removal of inefficient fireplace
• New external Rheem hot water heat pump (60-70% efficiencies)
• Lined thermal drapes under pelmets for all windows and doors
• Installation of an efficient LHZ 2400kwh wall heater with thermostat- new technology
• Energy efficient lighting – compact fluorescent bulbs
Water Saving Features
• Low flow shower head – water saving features
• Low flow shower head and taps
• Large rainwater tank to collect roof run off to flush toilets and for external use
• Low flow dual flush toilet
Waste Management
• Good construction practices for recycling and removal of waste were followed
• Recycling of windows and internal electrical fittings
• Specialist removal of asbestos
• Use of mechanical ventilation to the outside in bathroom, toilet and kitchen
• Installation of a Cleanaire Heat recovery air exchange ventilation system collecting warm air from the kitchen and lounge and redistributing to the bedrooms and hallway.


Historical data on resource consumption has been collected to give a benchmark for progress towards our goals of better performance in use. The tenant has been at the property from the beginning of 2000. Monitoring equipment will be installed to demonstrate improved operational resource (energy, water, financial) efficiency and improved resident health.
Data collected will include temperature and humidity in the living area and bedrooms, AC current from hot water heat pump, ventilation fans and 2.4kW radiant and convection heater.
It will also include water consumption of the hot water heat pump and concentrations of carbon dioxide from the living area and bedrooms along with other information.


This project has proven to be a real joint venture with all those involved giving a considerable amount of time, effort and support.
The star energy rating of the house will be raised from 2 to 5 with the interventions that have taken place.
The involvement of the tenant has proved to be rewarding for all participants and central to the outcomes and there will be an ongoing involvement in the monitoring Programme.
It is hoped that this project will inspire HNZC to run similar processes on other state properties.


Housing New Zealand Corporation (HNZC)
David Vui- Talitu, Stuart Bracey, Taniela Mataele, Guy Penny
Landcare Research
Kathryn Scott, Jeremy Gabe, Michael Krausse
University of Auckland , School of Population Health (UoA)
Dr. Chris Bullen, Marwa Safti
New Zealand Housing Foundation (NZHF)
Terry Foster
The Family – Barbara
Architect – Michael Pepper, Pepper Architects
Builder – Eru Cameron, Eru Cameron Builders Ltd
Autex – the Green stuff wall insulation
Air Conditioning Services (NZ) Ltd Cleanaire
Heat Recovery Ventilator
LHZ Heaters – 2400kWh wall heater
Rheem – Water Heating System


SHAC09-TeamHousewise-FinalReport.pdf (3MB)
SHAC09-TeamHousewise-Appendices.pdf (5MB)

Leave a Reply